Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 157, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424498

RESUMO

BACKGROUND: D-type cyclins (CYCD) regulate the cell cycle G1/S transition and are thus closely involved in cell cycle progression. However, little is known about their functions in rice. RESULTS: We identified 14 CYCD genes in the rice genome and confirmed the presence of characteristic cyclin domains in each. The expression of the OsCYCD genes in different tissues was investigated. Most OsCYCD genes were expressed at least in one of the analyzed tissues, with varying degrees of expression. Ten OsCYCD proteins could interact with both retinoblastoma-related protein (RBR) and A-type cyclin-dependent kinases (CDKA) forming holistic complexes, while OsCYCD3;1, OsCYCD6;1, and OsCYCD7;1 bound only one component, and OsCYCD4;2 bound to neither protein. Interestingly, all OsCYCD genes except OsCYCD7;1, were able to induce tobacco pavement cells to re-enter mitosis with different efficiencies. Transgenic rice plants overexpressing OsCYCD2;2, OsCYCD6;1, and OsCYCD7;1 (which induced cell division in tobacco with high-, low-, and zero-efficiency, respectively) were created. Higher levels of cell division were observed in both the stomatal lineage and epidermal cells of the OsCYCD2;2- and OsCYCD6;1-overexpressing plants, with lower levels seen in OsCYCD7;1-overexpressing plants. CONCLUSIONS: The distinct expression patterns and varying effects on the cell cycle suggest different functions for the various OsCYCD proteins. Our findings will enhance understanding of the CYCD family in rice and provide a preliminary foundation for the future functional verification of these genes.


Assuntos
Ciclinas , Oryza , Ciclinas/genética , Ciclinas/metabolismo , Oryza/genética , Oryza/metabolismo , Fosforilação , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclo Celular/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Mitose
2.
BMC Plant Biol ; 24(1): 145, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413866

RESUMO

BACKGROUND: Alternative polyadenylation (APA) is an important pattern of post-transcriptional regulation of genes widely existing in eukaryotes, involving plant physiological and pathological processes. However, there is a dearth of studies investigating the role of APA profile in rice leaf blight. RESULTS: In this study, we compared the APA profile of leaf blight-susceptible varieties (CT 9737-613P-M) and resistant varieties (NSIC RC154) following bacterial blight infection. Through gene enrichment analysis, we found that the genes of two varieties typically exhibited distal poly(A) (PA) sites that play different roles in two kinds of rice, indicating differential APA regulatory mechanisms. In this process, many disease-resistance genes displayed multiple transcripts via APA. Moreover, we also found five polyadenylation factors of similar expression patterns of rice, highlighting the critical roles of these five factors in rice response to leaf blight about PA locus diversity. CONCLUSION: Notably, the present study provides the first dynamic changes of APA in rice in early response to biotic stresses and proposes a possible functional conjecture of APA in plant immune response, which lays the theoretical foundation for in-depth determination of the role of APA events in plant stress response and other life processes.


Assuntos
Oryza , Xanthomonas , RNA-Seq , Oryza/metabolismo , Poliadenilação/genética , Resistência à Doença/genética , Estresse Fisiológico , Xanthomonas/fisiologia , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
3.
Plants (Basel) ; 13(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38256728

RESUMO

Salt stress is one of the most important factors limiting rice growth and yield increase. Salt tolerance of rice at the bud burst (STB) stage determines whether germinated seeds can grow normally under salt stress, which is very important for direct seeding. However, reports on quantitative trait loci (QTLs) and candidate genes for STB in rice are very limited. In this study, a natural population of 130 indica and 81 japonica rice accessions was used to identify STB-related QTLs and candidate genes using a genome-wide association study (GWAS). Nine QTLs, including five for relative shoot length (RSL), two for relative root length (RRL), and two for relative root number (RRN), were identified. Five of these STB-related QTLs are located at the same site as the characterized salt tolerance genes, such as OsMDH1, OsSRFP1, and OsCDPK7. However, an important QTL related to RSL, qRSL1-2, has not been previously identified and was detected on chromosome 1. The candidate region for qRSL1-2 was identified by linkage disequilibrium analysis, 18 genes were found to have altered expression levels under salt stress through the RNA-seq database, and 10 of them were found to be highly expressed in the shoot. It was also found that, eight candidate genes (LOC_Os01g62980, LOC_Os01g63190, LOC_Os01g63230, LOC_Os01g63280, LOC_Os01g63400, LOC_Os01g63460, and LOC_Os01g63580) for qRSL1-2 carry different haplotypes between indica and japonica rice, which exactly corresponds to the significant difference in RSL values between indica and japonica rice in this study. Most of the accessions with elite haplotypes were indica rice, which had higher RSL values. These genes with indica-japonica specific haplotypes were identified as candidate genes. Rice accessions with elite haplotypes could be used as important resources for direct seeding. This study also provides new insights into the genetic mechanism of STB.

4.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(2): 148-157, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38284256

RESUMO

Objective To investigate the expression and clinical significance of PD-1 and its ligand PD-L1 in peripheral blood CD19+CD25+ regulatory B cells (Bregs) in patients with systemic lupus erythematosus (SLE). Methods Peripheral blood samples were collected from 50 patients and 41 healthy controls (HCs). The proportion of CD19+CD25+Bregs in peripheral blood as well as the expression of PD-1+B and PD-L1+B cells on CD19+CD25+/-B cells, were detected by flow cytometry. At the same time, clinical information, such as clinical manifestations and laboratory indexes, was collected from patients. CD4+T cells and CD19+B cells were isolated by immunomagnetic beads and co-cultured in vitro to detect the differentiation of Bregs. Results The proportion of CD19+CD25+Bregs in the peripheral blood of SLE patients was lower than that in HC, while the expression of PD-1 and PD-L1 on Bregs was higher than that in HCs. SLE patients with pleural effusion, arthritis, and elevated CRP had a higher frequency of Bregs compared to the corresponding negative group. SLE patients with decreased immunoglobulin M (IgM) and positive anti-ribonuclear protein (RNP) antibodies had a lower frequency of Bregs compared to the corresponding negative group. SLE patients with infection, fever, arthritis, and elevated immunoglobulin A (IgA) had a higher frequency of CD19+CD25+PD-1+ cells compared to the corresponding negative group. SLE patients with infection, fever, and elevated IgA had a higher frequency of CD19+CD25+PD-L1+ cells compared to the corresponding negative group. And activated CD4+T cells were beneficial to the expression of CD25 on CD19+B cells. Conclusion The peripheral blood CD19+CD25+ Bregs are decreased in SLE patients, while the expression of PD-1 and PD-L1 on cell surface is increased, which is correlated with clinical manifestations and laboratory parameters. Activation of CD4+T cells promotes the differentiation of Bregs.


Assuntos
Artrite , Linfócitos B Reguladores , Lúpus Eritematoso Sistêmico , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1 , Linfócitos B Reguladores/metabolismo , Antígenos CD19/metabolismo , Artrite/metabolismo , Imunoglobulina A/metabolismo , Citometria de Fluxo , Linfócitos T Reguladores
5.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139187

RESUMO

Late spring cold is a disastrous weather condition that often affects early rice seedlings in southern China, limiting the promotion of direct seeding cultivation. However, there are few reports on the effect of these events and on the growth recovery mechanism of rice root systems after rice seedlings are exposed to this stress. This study selected the strong-growth-recovery variety B116 (R310/R974, F17) and the slow-recovery variety B811 (Zhonghui 286) for direct seeding cultivation and exposed them to low temperature and low-light stress to simulate a late spring cold event in an artificial climate chamber. The treatment consisted of 4 days of exposure to a day/night temperature of 14/10 °C and a light intensity of 266 µmol m-2s-1 while the control group was kept at a day/night temperature of 27/25 °C and light intensity of 533 µmol m-2s-1. The results showed that 6 days after stress, the total length, surface area, and volume of B116 roots increased by 335.5%, 290.1%, and 298.5%, respectively, while those of B811 increased by 228.8%, 262.0%, and 289.1%, respectively. In B116, the increase in root fresh weight was 223.1%, and that in B811 was 165.6%, demonstrating rapid root recovery after stress and significant differences among genotypes. The content of H2O2 and MDA in the B116 roots decreased faster than that in the B811 roots after normal light intensity and temperature conditions were restored, and the activity of ROS metabolism enzymes was stronger in B116 roots than in B811 roots. The correlation analysis between the transcriptome and metabolome showed that endogenous signal transduction and starch and sucrose metabolism were the main metabolic pathways affecting the rapid growth of rice seedling roots after exposure to combined stress from low temperature and low light intensities. The levels of auxin and sucrose in the roots of the strong-recovery variety B116 were higher, and this variety's metabolism was downregulated significantly faster than that of B811. The auxin response factor and sucrose synthesis-related genes SPS1 and SUS4 were significantly upregulated. This study contributes to an understanding of the rapid growth recovery mechanism in rice after exposure to combined stress from low-temperature and low-light conditions.


Assuntos
Oryza , Plântula , Plântula/metabolismo , Transcriptoma , Oryza/metabolismo , Temperatura , Peróxido de Hidrogênio/metabolismo , Ácidos Indolacéticos/metabolismo , Metaboloma , Sacarose/metabolismo , Raízes de Plantas/metabolismo
6.
Plant Phenomics ; 5: 0099, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37817886

RESUMO

The environmental conditions in customered speed breeding practice are, to some extent, empirical and, thus, can be further optimized. Crop and plant models have been developed as powerful tools in predicting growth and development under various environments for extensive crop species. To improve speed breeding, crop models can be used to predict the phenotypes resulted from genotype by environment by management at the population level, while plant models can be used to examine 3-dimensional plant architectural development by microenvironments at the organ level. By justifying the simulations via numerous virtual trials using models in testing genotype × environment × management, an optimized combination of environmental factors in achieving desired plant phenotypes can be quickly determined. Artificial intelligence in assisting for optimization is also discussed. We admit that the appropriate modifications on modeling algorithms or adding new modules may be necessary in optimizing speed breeding for specific uses. Overall, this review demonstrates that crop and plant models are promising tools in providing the optimized combinations of environment factors in advancing crop growth and development for speed breeding.

7.
Adv Rheumatol ; 63(1): 51, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848996

RESUMO

BACKGROUND: The defect of B cell self-tolerance and the continuous antigen presentation by T cells (TCs) mediated by autoreactive B cells (BCs) play a key role in the occurrence and development of systemic lupus erythematosus (SLE). PD-1/PD-L1 signaling axis negatively regulates the immune response of TCs after activation and maintains immune tolerance. However, the effect of PD-1/PD-L1 signaling axis on the interaction between CD19+B/CD4+TCs in the peripheral blood of patients with SLE has not been studied in detail. METHODS: PD-1/PD-L1 and Ki-67 levels in peripheral blood (PB) of 50 SLE patients and 41 healthy controls (HCs) were detected through flow cytometry, and then the expression of PD-1+/-cells and PD-L1+/-cells Ki-67 was further analyzed. CD19+B/CD4+TCs were separated for cell culture and the supernatant was collected to determine proliferation and differentiation of TCs. IL-10 and IFN-γ secretion in the supernatant was also determined using ELISA. RESULTS: The PD-1, PD-L1, and Ki-67 levels on CD19+B/CD4+TCs in patients with SLE were higher than HCs. In CD19+B/CD4+TCs of SLE patients, the proliferative activity of PD-L1+ cells was higher than that of PD-L1- cells, and the proliferative activity of PD-1+ cells was higher than that of PD-1- cells. In the system co-culturing CD19+B/CD4+TCs from HCs/SLE patients, activated BCs promoted TCs proliferation and PD-L1 expression among TCs. Addition of anti-PD-L1 to co-culture system restored the proliferation of TCs, and inhibited IL-10/IFN-γ level. The addition of anti-PD-L1 to co-culture system also restored Tfh and downregulated Treg in HCs. CONCLUSIONS: Axis of PD-1/PD-L1 on CD19+B/CD4+TCs in PB of SLE patients is abnormal, and cell proliferation is abnormal. In CD19+B/CD4+TCs of SLE patients, the proliferative activity of PD-L1+ and PD-1+ cells compared with PD-L1- and PD-1- cells in SLE patients, respectively. CD19+B/CD4+TCs in SLE patients can interact through PD-1/PD-L1.


Assuntos
Interleucina-10 , Lúpus Eritematoso Sistêmico , Humanos , Antígeno B7-H1/metabolismo , Linfócitos T CD4-Positivos , Antígeno Ki-67/metabolismo , Receptor de Morte Celular Programada 1/metabolismo
8.
Plants (Basel) ; 12(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687373

RESUMO

The leaf is the main site of photosynthesis and is an important component in shaping the ideal rice plant architecture. Research on leaf morphology and development will lay the foundation for high-yield rice breeding. In this study, we isolated and identified a novel curling leaf mutant, designated curling leaf 1 (cl1). The cl1 mutant exhibited an inward curling phenotype because of the defective development of sclerenchymatous cells on the abaxial side. Meanwhile, the cl1 mutant showed significant reductions in grain yield and thousand-grain weight due to abnormal leaf development. Through map-based cloning, we identified the CL1 gene, which encodes a MYB transcription factor that is highly expressed in leaves. Subcellular localization studies confirmed its typical nuclear localization. Transcriptome analysis revealed a significant differential expression of the genes involved in photosynthesis, leaf morphology, yield formation, and hormone metabolism in the cl1 mutant. Yeast two-hybrid assays demonstrated that CL1 interacts with alpha-tubulin protein SRS5 and AP2/ERF protein MFS. These findings provide theoretical foundations for further elucidating the mechanisms of CL1 in regulating leaf morphology and offer genetic resources for practical applications in high-yield rice breeding.

9.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(5): 750-759, 2023 May 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37539578

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease caused by inflammatory cells. Various inflammatory cells involved in RA include fibroblast-like synoviocytes, macrophages, CD4+T-lymphocytes, B lymphocytes, osteoclasts and chondrocytes. The close interaction between various inflammatory cells leads to imbalance of immune response and disorder of the expression of mRNA in inflammatory cells. It helps to drive production of pro-inflammatory cytokines and stimulate specific antigen-specific T- and B-lymphocytes to produce autoantibodies which is an important pathogenic factor for RA. Competing endogenous RNA (ceRNA) can regulate the expression of mRNA by competitively binding to miRNA. The related ceRNA network is a new regulatory mechanism for RNA interaction. It has been found to be involved in the regulation of abnormal biological processes such as proliferation, apoptosis, invasion and release of inflammatory factors of RA inflammatory cells. Understanding the ceRNA network in 6 kinds of RA common inflammatory cells provides a new idea for further elucidating the pathogenesis of RA, and provides a theoretical basis for the discovery of new biomarkers and effective therapeutic targets.


Assuntos
Artrite Reumatoide , MicroRNAs , Sinoviócitos , Humanos , Artrite Reumatoide/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Citocinas/metabolismo , RNA Mensageiro/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Proliferação de Células
10.
Food Chem X ; 18: 100720, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37397194

RESUMO

The correlation between flavonoids, phenolic metabolites and the total antioxidant capacity is well established. However, specific biomarkers of metabolites with antioxidant properties in purple rice grains remain unidentified. This study integrated nontargeted metabolomics, quantitative detection of flavonoids and phenolic compounds, and physiological and biochemical data to identify metabolite biomarkers of the antioxidant properties of purple rice grains after filling. The findings demonstrated a significant enhancement in the biosynthesis of flavonoids during the middle and late filling stages in purple rice grains. Additionally, the pathways involved in anthocyanin and flavonoid biosynthesis were significantly enriched. Catalase (CAT), phenylalanine ammonia-lyase (PAL), total phenols (TP), flavonoids (FD), and oligomeric proanthocyanidin (OPC) were significantly correlated with philorizin, myricetin 3-galactoside, and trilobatin. Phlorizin, myricetin 3-galactoside, and trilobatin were metabolite biomarkers of antioxidant properties in purple rice grains. This study provides new ideas for the cultivation of high-quality coloured rice varieties with high antioxidant activity.

11.
Plants (Basel) ; 12(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447057

RESUMO

The photosynthetic capacity of flag leaf plays a key role in grain yield in rice. Nevertheless, there are few studies on the heterosis of the rice flag leaf. Therefore, this study focuses on investigating the genetic basis of heterosis for flag leaf in the indica super hybrid rice combination WFYT025 in China using a high-throughput next-generation RNA-seq strategy. We analyzed the gene expression of flag leaf in different environments and different time periods between WFYT025 and its female parent. After obtaining the gene expression profile of the flag leaf, we further investigated the gene regulatory network. Weighted gene expression network analysis (WGCNA) was used to identify the co-expressed gene sets, and a total of 5000 highly expressed genes were divided into 24 co-expression groups. In CHT025, we found 13 WRKY family transcription factors in SDGhps under the environment of early rice and 16 WRKY family genes in SDGhps of under the environment of middle rice. We found nine identical transcription factors in the two stages. Except for five reported TFs, the other four TFs might play an important role in heterosis for grain number and photosynthesis. Transcription factors such as WRKY3, WRKY68, and WRKY77 were found in both environments. To eliminate the influence of the environment, we examined the metabolic pathway with the same SDGhp (SSDGhp) in two environments. There were 312 SSDGhps in total. These SSDGhps mainly focused on the phosphorus metallic process, phosphorylation, plasma membrane, etc. These results provide resources for studying heterosis during super hybrid rice flag leaf development.

12.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(3): 444-454, 2023 Mar 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37164928

RESUMO

Membrane-bound programmed cell death-1 (mPD-1) and membrane-bound programmed cell death-ligands (mPD-Ls) have soluble forms, which are soluble programmed cell death-1 (sPD-1) and soluble programmed cell death-ligands (sPD-Ls) [including soluble programmed cell death-ligand 1 (sPD-L1) and soluble programmed cell death-ligand 2 (sPD-L2)]. sPD-1 and sPD-L2 are mainly produced by alternative splicing isoforms of PD-1 mRNA, while sPD-L1 is produced by matrix metalloproteinases (MMPs) cutting membrane-bound programmed cell death-ligand 1 (mPD-L1). sPD-1 and sPD-Ls play an important role in autoimmune regulation via blocking the mPD-1 /mPD-L1 pathway, while connective tissue disease (CTD) is a kind of disease caused by autoimmune reaction, and abnormal function of mPD-1/mPD-L1 can occur in the occurrence and development of many autoimmune diseases. Therefore, sPD-1 and sPD-Ls play an important role in the pathogenesis of CTD caused by autoimmune reaction via blocking the mPD-1 /mPD-L1 pathway. It is of great practical significance to understand clinical value of sPD-1 and sPD-Ls in various CTDs for improving the quality of life of patients and the underlying mechanism.


Assuntos
Doenças Autoimunes , Doenças do Tecido Conjuntivo , Humanos , Ligantes , Qualidade de Vida , Doenças Autoimunes/etiologia , Apoptose
13.
Genes (Basel) ; 14(5)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37239430

RESUMO

The ability of various pests and diseases to adapt to a single plant resistance gene over time leads to loss of resistance in transgenic rice. Therefore, introduction of different pest and disease resistance genes is critical for successful cultivation of transgenic rice strains with broad-spectrum resistance to multiple pathogens. Here, we produced resistance rice lines with multiple, stacked resistance genes by stacking breeding and comprehensively evaluated their resistance to Chilo suppressalis (striped rice stemborer), Magnaporthe oryzae (rice blast), and Nilaparvata lugens (brown planthopper) in a pesticide-free environment. CRY1C and CRY2A are exogenous genes from Bacillus thuringiensis. Pib, Pikm, and Bph29 are natural genes in rice. CH121TJH was introduced into CRY 1C, Pib, Pikm, and Bph29. CH891TJH and R205XTJH were introduced into CRY 2A, Pib, Pikm, and Bph29. Compared with those observed in their recurrent parents, CH121TJH significantly increased the mortality of borers. The other two lines CH891TJH and R205XTJH are the same result. Three lines introduction of Pib and Pikm significantly reduced the area of rice blast lesions, and introduction of Bph29 significantly reduced seedling mortality from N. lugens. Introduction of the exogenous genes had relatively few effects on agronomic and yield traits of the original parents. These findings suggest that stacking of rice resistance genes through molecular marker-assisted backcross breeding can confer broad spectrum and multiple resistance in differently genetic backgrounds.


Assuntos
Hemípteros , Mariposas , Animais , Plantas Geneticamente Modificadas/genética , Melhoramento Vegetal , Mariposas/genética , Hemípteros/genética
14.
Front Plant Sci ; 14: 1113618, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008461

RESUMO

Anthocyanin is one of the flavonoids, which has strong antioxidant properties. Functional rice rich in anthocyanins can not only improve immunity, but also anti-radiation, beauty, anti-aging effect, very popular in the market. In this study, we used Zibaoxiangnuo 1 (ZBXN 1), a functional rice variety which is rich in total flavonoids and anthocyanins, as the experimental material to construct Recombination Inbred Lines (RILs) with Minghui63 (MH63), a variety without anthocyanins. The contents of anthocyanins and total flavonoids of RILs and two parents were determined for three consecutive generations. The average anthocyanin content of parent ZBXN 1 was 319.31 mg/kg, and the anthocyanin inheritance of RIL population was relatively stable, with 10 samples higher than ZBXN 1. In addition, there was no significant difference in the total flavonoids content between the two parents, the total flavonoids content of Z25 in RIL population was 0.33%. Based on these studies, we believe that ZBXN 1 has abundant and stable anthocyanins, which can be used as an intermediate breeding material for breeding high-quality varieties with high anthocyanins, and lay a foundation for breeding more anthocyanin-rich rice varieties.

15.
Front Plant Sci ; 14: 1133592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875613

RESUMO

Low temperature and overcast rain are harmful to directly seeding early rice, it can hinder rice growth and lower rice biomass during the seedling stage, which in turn lowers rice yield. Farmers usually use N to help rice recuperate after stress and minimize losses. However, the effect of N application on the growth recovery for rice seedlings after such low temperature stress and its associated physiological changes remain unclearly. Two temperature settings and four post-stress N application levels were used in a bucket experiment to compare B116 (strong growth recovery after stress) with B144 (weak growth recovery). The results showed that the stress (average daily temperature at 12°C for 4 days) inhibited the growth of rice seedlings. Compared to the zero N group, the N application group's seedling height, fresh weight and dry weight significantly increased after 12 days. In particular, the increases in all three growth indicators were relatively higher than that of N application at normal temperature, indicating the importance of N application to rice seedlings after low temperature stress. The antioxidant enzyme activity of rice seedlings increased significantly after N application, which reduced the damaging effect of ROS (reactive oxygen species) to rice seedlings. At the same time, the soluble protein content of seedlings showed a slow decrease, while the H2O2 and MDA (malondialdehyde) content decreased significantly. Nitrogen could also promote nitrogen uptake and utilization by increasing the expression of genes related to NH 4 + and NO 3 - uptake and transport, as well as improving the activity of NR (nitrate reductase) and GS (glutamine synthetase) in rice. N could affect GA3 (gibberellin A3) and ABA (abscisic acid) levels by regulating the anabolism of GA3 and ABA. The N application group maintained high ABA levels as well as low GA3 levels from day 0 to day 6, and high GA3 levels as well as low ABA levels from day 6 to day 12. The two rice varieties showed obvious characteristics of accelerated growth recovery and positive physiological changes by nitrogen application after stress, while B116 generally showed more obvious growth recovery and stronger growth-related physiological reaction than that of B144. The N application of 40 kg hm-2 was more conducive to the rapid recovery of rice growth after stress. The above results indicated that appropriate N application promoted rice seedling growth recovery after low temperature stress mainly by increasing the activities of antioxidant enzymes and nitrogen metabolizing enzymes as well as regulating the levels of GA3 and ABA. The results of this study will provide a reference for the regulation of N on the recovery of rice seedling growth after low temperature and weak light stress.

16.
Foods ; 12(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36765989

RESUMO

Glutinous rice has very low amylose content and is a good material for determining the structure and physicochemical properties of amylopectin. We selected 29 glutinous rice varieties and determined the amylopectin structure by high-performance anion exchange chromatography with the pulsed amperometric detection method. We also determined the correlation between amylopectin structure and the physicochemical properties of starch extracted from these varieties. The results showed that the amylopectin chain ratio Σdegree of polymerization (DP) ≤ 11/ΣDP ≤ 24 of 29 glutinous rice varieties was greater than 0.26, signifying that these varieties contained type II amylopectin. The results of the correlation analysis with gelatinization temperature showed that ΣDP 6-11 was significantly negatively correlated with the onset gelatinization temperature (GT) (TO), peak GT (TP), and conclusion GT (TC). Among the thermodynamic properties, ΣDP 12-24 was significantly positively correlated with To, Tp, and Tc, ΣDP 25-36 was significantly negatively correlated with To, Tp, and Tc, and ΣDP ≥ 37 had no correlation with the thermodynamic properties. The results of correlation analysis with RVA spectrum characteristic values showed that ΣDP 6-11 was significantly negatively correlated with hot paste viscosity (HPV), cool paste viscosity (CPV), consistency viscosity (CSV), peak time (PeT), and pasting temperature (PaT) among the Rapid Visco Analyzer (RVA) profile characteristics, ΣDP 12-24 was significantly positively correlated with HPV, CPV, CSV, PeT, and PaT, and ΣDP ≥ 25 had no correlation with the viscosity characteristics. Therefore, we concluded that the amylopectin structure had a greater effect on the TO, TP, TC, ΔH and peak viscosity, HPV, CPV, CSV, PeT, and PaT. The glutinous rice varieties with a higher distribution of short chains and a lower distribution of medium and long chains in the amylopectin structure resulted in lower GT and RVA spectrum characteristic values.

17.
Rice (N Y) ; 16(1): 8, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781713

RESUMO

A lack of stability in the expression of Bacillus thuringiensis genes (CRY) and the dialaninophosphate resistance gene (BAR) in transgenic rice plants can lead to the loss of important characters. The genetic stability of transgenic expression in high-generation lines is thus critically important for ensuring the success of molecular breeding efforts. Here, we studied the genetic stability of resistance to insect pests and herbicides in transgenic rice lines at the molecular and phenotypic levels in a pesticide-free environment. Southern blot analysis, real-time polymerase chain reaction, and enzyme-linked immunosorbent assays revealed high stability in the copy numbers and expression levels of CRY1C, CRY2A, and BAR in transgenic lines across different generations, and gene expression levels were highly correlated with protein expression levels. The insecticide resistance of the transgenic rice lines was high. The larval mortality of Chilo suppressalis was 50.25% to 68.36% higher in transgenic lines than in non-transgenic control lines. Percent dead hearts and percent white spikelets were 16.66% to 22.15% and 27.07% to 33.47% lower in transgenic lines than in non-transgenic control lines, respectively. The herbicide resistance of the transgenic rice lines was also high. The bud length and root length ranged were 2.53 cm to 4.20 cm and 0.28 cm to 0.73 cm higher in transgenic lines than in non-transgenic control lines in the budding stage, respectively. Following application of the herbicide Basta, the chlorophyll content of the transgenic lines began to recover 2 d later in the seedling and tillering stages and 3 d later in the booting and heading stages, by contrast, the chlorophyll content of the non-transgenic lines did not recover and continued to decrease. These findings revealed high genetic stability of the resistance to insect pests and herbicides across several generations of transgenic rice regardless of the genetic background.

18.
Genes (Basel) ; 14(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672879

RESUMO

Catalase (CAT) is an important antioxidant enzyme in plants that plays a key role in plant growth and stress responses. CAT is usually encoded by a small gene family that has been cloned and functionally studied in some species, such as Arabidopsis, wheat and cucumber, but its specific roles in rice are not clear at present. In this study, we identified three CAT family genes (OsCAT1, OsCAT2 and OsCAT3) in the rice genome and performed a systematic bioinformatics analysis. RT-PCR analysis revealed that OsCAT1-OsCAT3 was primarily expressed in vegetative tissues such as roots, stems and leaves. Since OsCAT3 showed the highest expression level among the three OsCAT genes, we then focused on its related functions. OsCAT3 prokaryotic expression protein has an obvious ability to remove H2O2. The OsCAT3crispr plant was short and had a low survival rate, the leaves were small with brown lesions, and the activities of the CAT, POD and SOD enzymes were significantly reduced. A microarray analysis showed that differentially expressed genes were primarily enriched in toxin metabolism and photosynthesis. This study laid a foundation for further understanding the function of the rice OsCAT gene.


Assuntos
Oryza , Catalase/genética , Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Fotossíntese
19.
Water Res ; 230: 119595, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36642031

RESUMO

The oxidative dissolution of As from arsenopyrite, one important arsenic mineral in reducing conditions, poses an environmental hazard to natural aquatic systems. The dissolution of arsenopyrite occurs slowly due to the surface precipitates of iron oxides in circumneutral oxic environments. However, the presence of natural ligands and coexisting metals may change the release of Fe species, which would be of critical importance to the dissolution of arsenopyrite. Here, we investigated the oxidative dissolution of arsenopyrite induced by pyrophosphate (PP) and dissolved Mn(III) species as a natural occurring Mn species with strong complexation affinity to PP. With the presence of PP, the formation of Fe(II)-PP complexes and its rapid oxidation to dissolved Fe(III)-PP species resulted in a substantial increase in the generation of hydroxyl radicals (•OH) under ambient dark conditions, contributing to faster dissolution of arsenopyrite and higher percentage of As(V) in the dissolved products. Dissolved Mn(III), though considered as an extra oxidant besides oxygen, unexpectedly acted as a radical scavenger for •OH and inhibited the production of As(V). Moreover, the oxidation of sulfur species differed in the two systems as significant formation of thiosulfate was observed with the presence of PP, which did not occur in the system with dissolved Mn(III). Overall, the effects of dissolved Mn(III) and PP on the dissolution of arsenopyrite and the subsequent transformation of Fe, As and S species have important implications for disentangling the interactions among these metastable elements, and for assessing their transport and environmental impacts in aquatic systems.


Assuntos
Arsênio , Compostos Férricos , Difosfatos , Solubilidade , Minerais , Oxirredução
20.
Adv Rheumatol ; 63: 51, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1519970

RESUMO

Abstract Background The defect of B cell self-tolerance and the continuous antigen presentation by T cells (TCs) mediated by autoreactive B cells (BCs) play a key role in the occurrence and development of systemic lupus erythematosus (SLE). PD-1/PD-L1 signaling axis negatively regulates the immune response of TCs after activation and maintains immune tolerance. However, the effect of PD-1/PD-L1 signaling axis on the interaction between CD19+B/CD4+TCs in the peripheral blood of patients with SLE has not been studied in detail. Methods PD-1/PD-L1 and Ki-67 levels in peripheral blood (PB) of 50 SLE patients and 41 healthy controls (HCs) were detected through flow cytometry, and then the expression of PD-1+/−cells and PD-L1+/−cells Ki-67 was further analyzed. CD19+B/CD4+TCs were separated for cell culture and the supernatant was collected to determine proliferation and differentiation of TCs. IL-10 and IFN-γ secretion in the supernatant was also determined using ELISA. Results The PD-1, PD-L1, and Ki-67 levels on CD19+B/CD4+TCs in patients with SLE were higher than HCs. In CD19+B/CD4+TCs of SLE patients, the proliferative activity of PD-L1+ cells was higher than that of PD-L1− cells, and the proliferative activity of PD-1+ cells was higher than that of PD-1− cells. In the system co-culturing CD19+B/CD4+TCs from HCs/SLE patients, activated BCs promoted TCs proliferation and PD-L1 expression among TCs. Addition of anti-PD-L1 to co-culture system restored the proliferation of TCs, and inhibited IL-10/IFN-γ level. The addition of anti-PD-L1 to co-culture system also restored Tfh and downregulated Treg in HCs. Conclusions Axis of PD-1/PD-L1 on CD19+B/CD4+TCs in PB of SLE patients is abnormal, and cell proliferation is abnormal. In CD19+B/CD4+TCs of SLE patients, the proliferative activity of PD-L1+ and PD-1+ cells compared with PD-L1− and PD-1− cells in SLE patients, respectively. CD19+B/CD4+TCs in SLE patients can interact through PD-1/PD-L1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...